Boundary Value Methods for Second-Order PDEs via the Lanczos-Chebyshev Reduction Technique
نویسندگان
چکیده
منابع مشابه
Eigenfunction Expansions for Second-Order Boundary Value Problems with Separated Boundary Conditions
In this paper, we investigate some properties of eigenvalues and eigenfunctions of boundary value problems with separated boundary conditions. Also, we obtain formal series solutions for some partial differential equations associated with the second order differential equation, and study necessary and sufficient conditions for the negative and positive eigenvalues of the boundary value problem....
متن کاملUnivariate modified Fourier methods for second order boundary value problems
We develop and analyse a new spectral-Galerkin method for the numerical solution of linear, second order differential equations with homogeneous Neumann boundary conditions. The basis functions for this method are the eigenfunctions of the Laplace operator subject to these boundary conditions. Due to this property this method has a number of beneficial features, including an O(N) condition numb...
متن کاملAn Effective Numerical Technique for Solving Second Order Linear Two-Point Boundary Value Problems with Deviating Argument
Based on reproducing kernel theory, an effective numerical technique is proposed for solving second order linear two-point boundary value problems with deviating argument. In this method, reproducing kernels with Chebyshev polynomial form are used (C-RKM). The convergence and an error estimation of the method are discussed. The efficiency and the accuracy of the method is demonstrated on some n...
متن کاملBoundary-Value Problems for Second Order PDEs Arising in Risk Management and Cellular Neural Networks Approach
متن کامل
A numerical comparison of Chebyshev methods for solving fourth order semilinear initial boundary value problems
In solving semilinear initial boundary value problems with prescribed non-periodic boundary conditions using implicit-explicit and implicit time stepping schemes, both the function and derivatives of the function may need to be computed accurately at each time step. To determine the best Chebyshev collocation method to do this, the accuracy of the real space Chebyshev differentiation, spectral ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2017
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2017/5945080